Estimating Abundance by Combining GPS and Counts

Fred Johnson
Senior Researcher, Dept. of Bioscience
Aarhus University, Denmark

Two sample estimator (Lincoln-Petersen)

- Two sample occasions: one to GPS tag individuals and one to count the population
- p_{1}, p_{2}, p_{3} are the proportion of GPS tags located at 1,2 , and 0 count sites, respectively
- $\widehat{N}=\frac{c\left(1-p_{2}\right)}{\left(1-p_{3}\right)}$
- Confidence intervals for N -hat can be derived in a number of ways
- based on an assumption of normality in N
- likelihood profile
- boot-strapping - drawing a large number of samples from a Dirichlet distribution parameterized by the number of tags located at 1,2 , and 0 locations and estimating N for each

Taiga bean geese

- Imbedded the GPS tag data in the existing IPM
- Net bias averaged -17% in the spring count and -22% in the autumn count

- Increased estimated carrying capacity from 70,000 to 83,000

AARHUS
UNIVERSITY

Practical considerations

- Locations of GPS-tagged individuals are representative of the spatial and temporal distribution of the population
- Depends on simultaneous measurements of marked \& unmarked birds
- Count data must be of sufficient temporal and spatial resolution
- GPS locations must occur when the count is made
- Both have proved challenging in practice
- Small sample sizes of GPS locations imply considerable sampling error, which is reflected in wide confidence intervals for population size

