Status of the impact models: barnacle geese foraging in Friesland

Monique de Jager, Nelleke Buitendijk Hans Baveco, Bart Nolet

Friesland's farmer-goose conflict

2 main questions:

• How do goose numbers relate to goose-induced damages?

 What are the effects of management on farmer-goose conflicts?

How do goose numbers relate to goose-induced damages?

Relating damage to the abundance of geese using damage assessments (at farmer level) and goose counts (at count-site level)

How many geese have visited a damage site?

A spatial probability density function tells us the probability that a goose was at location x,y at time t

0.16 0.14 Damage location 0.12 0 0.08 0.06 0.04 0.02

Count location

A spatial probability density function tells us the probability that a goose was at location x,y at time t

0.16 0.14 Damage location 0.12 0.1 0.08 0.06 0.04 0.02

Count location

We need to know the 'slope' of this pdf...

Use of GPS-tracks!

Per individual and per month, we estimated the exponent λ of the spatial probability density distribution

Per individual and per month, we estimated the exponent λ of the spatial probability density distribution

Using the estimated λ per species and month, we estimated the number of geese per damage site:

Using the estimated λ per species and month, we estimated the number of geese per damage site:

To make it a little more complicated:

Multiple fields per damage report, Some further apart than others...

→ Weighing factor
→ Locations used per field

Another weighing factor to account for the % of damaged ha within a report

Interactions between goose species affect relation with damage!

Interactions between goose species affect relation with damage!

Interactions between goose species affect relation with damage!

How do goose numbers relate to damages?

- Barnacle geese: positive log-linear relation many BAG on few fields produce less damage than the same number of BAG spread across many fields
- White-fronted and graylag geese: negative log-linear relation WFG and GLG may avoid heavily grazed fields, as they forage on taller grass than BAG

Model assumes non-biased, random foraging behavior!!

2 main questions:

• How do goose numbers relate to goose-induced damages?

 What are the effects of management on farmer-goose conflicts?

2 main questions:

• How do goose numbers relate to goose-induced damages?

- What are the effects of management on farmer-goose conflicts?
 - Management options:
 - Increase/decrease scaring activities
 - Increase/decrease accommodation areas

✤ 700 x 700 grid cells of 1 ha each

- Regular agricultural grassland (green)
- Accommodation area (yellow)
- Nature area (purple)
- Roost sites (dark blue)
- November half may (4680 timesteps of 1 hour)
- ✤ 600,000 barnacle geese in flocks of 1,000 individuals

The model

- Landscape is initialized
- Geese are initialized at roost sites (weighted random selection following the 2019 roost count)
- Per timestep: is it a daylight hour?
 - Either roost or forage
 - Make several decisions based on
 - Body weight
 - Memory
 - Grass height
 - Foraging flocks
 - Disturbances

The model

Status of the model:

- Currently: calibrating 7 parameters using one-at-atime analyses, Badness-of-fit to GPS data
- Next: validation with the chosen parameter value combination, badness-of-fit to goose numbers distributions

The model

Model simulations: with the calibrated and validated model, we run a range of management scenarios:

different levels of disturbance probabilities in regular agricultural areas

X different % agricultural grasslands as accommodation areas Effects on:

- Damage?
- Grass height?
- Average goose pressure?
- Fraction of patches affected?

Disturbance probability in regular agricultural areas

In collaboration with: Nelleke Buitendijk Hans Baveco Bart Nolet Helmut Kruckenberg Andrea Kölzsch Sander Moonen SOVON Bij12

