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Abstract 

This report describes recent progress in specifying the elements of an adaptive harvest program 

for taiga bean goose.  It describes harvest levels appropriate for first rebuilding the population 

of the Central Management Unit and then maintaining it near the goal specified in the AEWA 

International Single Species Action Plan (ISSAP).  This report also provides estimates of the 

length of time it would take under ideal conditions (no density dependence and no harvest) to 

rebuild depleted populations in the Western and Eastern Management Units.  We emphasize 

that our estimates are a first approximation because detailed demographic information is 

lacking for taiga bean geese.  Using allometric relationships, we estimated parameters of a theta-

logistic matrix population model.   The mean intrinsic rate of growth was estimated as r = 0.150 

(90% credible interval: 0.120 – 0.182).  We estimated the mean form of density dependence as 

2.361  (90% credible interval: 0.473 – 11.778), suggesting the strongest density dependence 

occurs when the population is near its carrying capacity.  Based on expert opinion, carrying 

capacity (i.e., population size expected in the absence of hunting) for the Central Management 

Unit was estimated as 87,900K  (90% credible interval: 82,000 – 94,100).  The ISSAP 

specifies a population goal for the Central Management Unit of 60,000 – 80,000 individuals in 

winter; thus, we specified a preliminary objective function as one which would minimize the 

difference between this goal and population size.  Using the concept of stochastic dominance to 

explicitly account for uncertainty in demography, we determined that optimal harvest rates for 

5, 10, 15, and 20-year time horizons were h = 0.00, 0.02, 0.05, and 0.06, respectively.  These 

optima represent a tradeoff between the harvest rate and the time required to achieve and 

maintain a population size within desired bounds.  We recognize, however, that regulation of 

absolute harvest rather than harvest rate is more practical, but our matrix model does not 

permit one to calculate an exact harvest associated with a specific harvest rate.  Approximate 

harvests for current population size in the Central Management Unit are 0, 1,200, 2,300, and 
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3,500 for the 5, 10, 15, and 20-year time horizons, respectively.  Populations of taiga bean geese 

in the Western and Eastern Units would require at least 10 and 13 years, respectively, to reach 

their minimum goals under the most optimistic of scenarios.  The presence of harvest, density 

dependence, or environmental variation could extend these time frames considerably.  Finally, 

we stress that development and implementation of internationally coordinated monitoring 

programs will be essential to further development and implementation of an adaptive harvest 

management program. 

Introduction 

The abundance of many goose species in Europe has increased in recent decades, likely as a 

combination of factors including reductions in hunting pressure, favorable changes in land use, 

and climate change (Madsen et al. 1999).  The taiga bean goose is an exception, however, 

declining from about 100 thousand birds in the mid-1990’s  to 63 thousand in 2009 (Fox et al. 

2010).  Signatories of the African-Eurasion Waterbird Agreement (AEWA) recently upgraded 

the conservation status of the taiga bean goose, requiring it to be subject to legal measures as 

described in the International Single Species Action Plan (ISSAP) (Marjakangas et al. 2015) 

(Resolution 5.6 from the AEWA MOP5, May 2012): “…By way of exception for those populations 

listed in Categories 2 and 3 in Column A and which are marked by an asterisk, and those 

populations listed in Category 4 in Column A, hunting may continue on a sustainable use basis. This 

sustainable use shall be conducted within the framework of an international species action plan, 

through which Parties will endeavour to implement the principles of adaptive harvest 

management.” 

Taiga bean geese breed in Russia, Finland, Sweden, and Norway, and have a highly 

discontinuous winter distribution, which includes population segments in the United Kingdom 

and northern Denmark, in southern Sweden and southeastern Denmark, in northeastern 

Germany and western Poland, and in Central Asia.(Madsen et al. 1999).  They are hunted 

principally in Russia, Sweden, southeastern Denmark, and until 2014 in Finland when a 

temporary moratorium went into effect.  Reliable estimates of harvest are lacking, especially 

from Russia, but the take likely exceeded 10,000 range-wide prior to hunting restrictions in 

Scandanavia.  The ISSAP depicts four management units of relatively discrete populations of 

varying status (Fig. 1).  Our purpose here is to describe technical progress in developing an 

adaptive harvest management program (AHM) for the Central Management Unit of taiga bean 

geese.  We were unable to conduct a similar harvest assessment for taiga bean geese in the 

Western and Eastern Management Units at this time, although we do briefly discuss these 

populations. 
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Fig. 1. Geographic representation of management units recommended for the taiga bean goose.  

Light and dark polygons represent breeding and wintering areas, respectively. (reproduced 

from the AEWA International Single Species Action Plan) 

 

Critical elements of adaptive harvest management are: (1) quantifiable management 

objectives, by which alternative management strategies can be evaluated; (2) a set of alternative 

harvest actions (e.g., harvest quotas), from which one must be chosen (typically each year); (3) 

models of population dynamics, describing potential effects of harvest and other environmental 

drivers, as well as measures of model uncertainty; and (4) a monitoring program to assess 

resource status, measure management performance, and reduce uncertainty about population 

dynamics and the effects of harvest.  This report describes recent progress in specifying these 

elements, and builds upon an initial assessment of sustainable harvest (Johnson 2015).  We 

caution the reader, however, that the contents of this report are both preliminary and 

deliberative.  

Methods 

Model of population dynamics. – The harvest of renewable natural resources is predicated on the 

notion of reproductive surplus, and ultimately on the theory of density-dependent population 

growth (Hilborn et al. 1995).  The theory predicts a negative relationship between the rate of 

population growth and population density (i.e., number of individuals per unit of limiting 

resource) due to intraspecific competition for resources.  In a relatively stable environment, 

unharvested populations tend to settle around an equilibrium where births balance deaths.  
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Populations respond to harvest losses by increasing reproductive output or through decreased 

natural mortality because more resources are available per individual (density-dependent 

feedback).  Population size eventually settles around a new equilibrium and the harvest, if not 

too heavy, can be sustained without destroying the breeding stock. 

 One of the most simple and commonly used models to determine sustainable harvests 

for birds is the discrete theta-logistic model (Gilpin and Ayala 1973): 

 

1 1 t
t t t t t

N
N N N r h N

K





  
     

   

,  

 

where N is population size, r  is the intrinsic rate of growth, K  is carrying capacity, 0   is 

the form of density dependence, h  is harvest rate, and t  is time (assumed here to be in 1-year 

increments).  The theta-logistic model lacks any age structure, however, and may not be a good 

approximation for geese, which typically do not breed regularly until they are three years old.  

Therefore, we used an age-structured analogue of the theta-logistic model for taiga bean geese.  

We assumed that the anniversary of the annual life cycle is in mid-winter following harvest (Fig. 

2).  This model assumes that survival of all age classes is identical once birds survive their first 

hunting season, that harvest mortality is additive to natural sources of mortality, and that 

young-of-the-year are twice as vulnerable to harvest as older birds. 
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Fig. 2.  Proposed life cycle of taiga bean geese based on a mid-winter anniversary date.  The 

three age classes represented are 0.5, 1.5, and ≥2.5 year olds.  Vital rates are survival in the 

absence of harvest, s, the harvest rate of birds that have survived at least one hunting season, h , 

and the reproductive rate, γ. 

 

The matrix model representation of this life cycle is: 
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, 

 

where n represents age-class abundance and t represents year.  The theta-logistic model with 

harvest can then be specified as: 

 

   1t t t tN N d N M I N      , 

 

where N  is the vector of age-specific abundances, M is the transition matrix, I is the identity 

matrix, and  td N is the density-dependent effect, where 
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  1
t

t

N
d N

K


 

    
 


, 

 

with carrying capacity, K, and form of density dependence, θ > 0 (Jensen 1995). 

 

Model parameterization. –The fixed parameters of the theta-logistic model must be estimated 

under optimal or ideal conditions (i.e., in the absence of harvest and any density dependence).  

In the absence of detailed demographic information, Johnson et al. (2012) relied on detailed 

mortality records from 1,111 captive individuals of 23 bird species, with body masses ranging 

from 12 – 8663g, to estimate adult survival as: 

 

   
1

exp 3.22 0.24log m a
s p




  
  

 

where a is age at first breeding (assumed to be 3 years in taiga bean geese), m is body mass in 

kg,   is model error with  2~ 0, 0.087N   , and p is the proportion of the population 

remaining alive at the maximum observed life span   0.03, 0.017p sd  .  We allowed for 

uncertainty in p using a beta distribution:  ~ 3.34,101.24p Beta .  To apply this approach for 

taiga bean geese we used the mass of females provided by Dunning (2008)  

( 2.843, 0.247m sd  ), and specified a gamma distribution to allow for variation in mass: 

 ~ 107.660,0.026m  . 

We used a novel method to estimate  by relying on the demographic-invariant method 

developed by (Niel and Lebreton 2005): 

 

   
2 21 1 4

1
2

sa s a s sa a sa
r

a

        
  
 
 

, 

 

where a is age at first breeding, s is adult survival, and r is the intrinsic rate of growth.  We first 

generated 50,000 random samples of adult survival, s, using the methods described above, and 

then used them to generate 50,000 samples of r using Niel and Lebreton’s (2005) formula.  Next, 

we used the random samples of r to specify  1 r (i.e., the intrinsic finite annual growth rate) 

as the dominant eigen value of transition matrices without harvest: 
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0 0

0 0

0

s

M s

s s

 
  
 
  

. 

 

We then calculated  numerically for each and every value of s, such that the dominant eigen 

value of M   was equal to the finite growth rate,  1 r , associated with each survival, s.  

The parameter 𝜃 in the theta-logistic model is often assumed to be equal to one, which 

specifies linear density dependence.  However, density dependence may be non-linear 

depending on life history (Fowler 1981), and we were interested in whether an assumption of 

linear density dependence was appropriate for taiga bean geese.  A negative relationship 

between 𝜃 and 𝑟 is consistent with prevailing ecological theory (e.g., Fowler (1981)).  Johnson et 

al. (2012) used point estimates of 𝜃 provided by Saether and Engen (2002) to fit the following 

model: 

  

 log 1.129 1.824r e     , 

 

where  2~ Normal 0, 0.942e   .  We truncated the normal distribution for the error term to 

the interval [-1.5 – 1.5] to keep values of theta within biologically realistic bounds.  We then 

used the model to estimate   and for each and every sample value of r.   

The carrying capacity (i.e., expected population size over the long term in the absence of 

harvest) is difficult to estimate without a sufficiently long time series of population and harvest 

estimates.  Lacking such data, we elicited expert judgements from those studying taiga bean 

geese breeding in the Keski-Pohjanmaa region of Finland.  Those experts suggested that the 

breeding population in their study area might be 1.3 – 3 times as large in the absence of hunting, 

with a modal value of about 2 times as large.  We in turn assumed a 90% credible interval of 

1.75 – 2.25 times current population size.  Extrapolating the densities of geese in Keski-

Pohjanmaa to the Central Management Unit resulted in a contemporary estimate of population 

size of about 41,800 at the onset of the breeding season.  Using this value and the 90% credible 

limits for the relative size of K , we fit a log-normal distribution to describe the uncertainty 

about the absolute value of  ~ log N 4.475,0.042K .   This distribution describes carrying 

capacity at the onset of the breeding season; mid-winter carrying capacity was calculated as 

K s , which assumes the mid-winter carrying capacity is proportionally higher due to 
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approximately six months of mortality between the winter and breeding periods.  

Unfortunately, we were unable to obtain expert opinions about the carrying capacity of taiga 

bean geese in the Western and Eastern Management Units.  Thus, we were unable to conduct a 

complete harvest assessment for those populations at this time. 

We combined the i = 50,000 random samples of , , , and i i i is K  to form 50,000 

transition matrices, ,
i

M and density –dependence parameters,  i

td N , as a way of 

representing the considerable uncertainty about population dynamics of taiga bean geese in the 

Central Management Unit.  We used these matrices and density-dependence parameters to 

simulate population sizes over time (see the section entitled Optimization below).  We also 

examined how population size of Western and Eastern Management Unit birds might change 

over time in the absence of harvest and density-dependence.  We used the matrices 
i

M  , initial 

population sizes of 1,500 and 20,000 (15,000 in unit E1 plus 5,000 in unit E2), respectively, and 

the associated stable age distributions for matrices 
i

M  .  Growth rates thus derived are what 

they would be if the populations remained 1 2   of their respective carrying capacities and 

there was no harvest.  Using these growth rates, we calculated the mean number of years for the 

Western and Eastern populations to meet their minimum goals of 5,000 and 100,000 

respectively. 

 

Management objectives. – The ISSAP call for restoring and then maintaining the Central 

Management Unit population of taiga bean geese at a level of 60,000 – 80,000 individuals in 

winter.  Moreover, the stated purpose of AHM is to adjust harvest levels to reflect the status of 

the population such that harvest does not jeopardize future harvest opportunities (i.e., harvest 

is sustainable).  Based on these goals, a possible objective function for harvest management is: 

 

 
 

 
* 1

, | , , ,

|

, | , , , arg max

T

t t

t

h T s K

U N h

V h T s K
T 

  


, 

where 

  
1

|

1 e
tN h

tU
 


  

  
 

, 

 

and where the optimum value V of constant harvest rate, h , over time horizon, T, maximizes 

mean population utility, U, with a mid-winter population goal of 70,000  taiga bean geese, 
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and inflection points  ,     , where 15,000  .  The proposed objective function 

expresses near-complete satisfaction with population sizes in the range 60,000-80,000, with 

satisfaction declining for population sizes outside this range (Fig. 3).  The form of this utility 

curve is similar to the one used for AHM of pink-footed geese.  Note that the proposed objective 

function does not explicitly account for the value of harvest, but rather assumes harvest is 

merely a tool to maintain population abundance within acceptable limits. 

 

Fig. 3.  Proposed utility of mid-winter population sizes of taiga bean geese in the Central 

Management Unit. 

 

Alternative harvest actions. – The dangers of harvesting at a constant level are well known 

(Ludwig 2001), and harvest is more likely to be sustainable if a constant harvest rate is used 

(i.e., absolute harvest is changed to reflect stochastic changes in population size) (Runge et al. 

2004).  We thus examined possible harvest rates in the range 0 – 0.1 in increments of 0.01.  Our 

goal was to find the constant harvest rate that best satisfies the objective function.  We 

recognize, however, that regulation of harvest rather than harvest rate is more practical.  

Unfortunately, our matrix model does not permit one to calculate an exact harvest associated 

with a specific harvest rate.  This is due largely to the fact that in practice harvest includes 

young of the year, which are only represented by post-harvest individuals in the matrix model.  

An approximate harvest, H, associated with a specific harvest rate could be calculated as: 

 



Technical Progress Summary 14 November 
2016 

 

10 
 

       2.5
, 2t t t t t t t t tH N h n d N s h N d N sh


   , 

 

where bars over the parameters signify mean values.  In the absence of information about age 

structure of the mid-winter population, one could rely on the stable age distribution of the 

matrix  td N M .  We reiterate that this is only a rough approximation of harvest associated 

with a given population size and harvest rate.  Calculation of an exact harvest would require 

additional assumptions about the specific timing of mortality and reproductive events during 

the annual cycle, and we were uncomfortable doing so given the lack of empirical data. 

 

Optimization. –We used a simulation approach to determine the harvest rate that maximized the 

objective function for a specified time horizon.  We examined time horizons of T = 5, 10, 15, and 

20 years.  For each of the i = 50,000 matrix models, we initialized population size as

1 41,800i i

tN s  , which reflects the contemporary estimate in the Keski-Pohjanmaa 

breeding area, inflated to produce a corresponding mid-winter estimate.   Each initial 

population vector was parameterized using a random draw from a Dirichlet distribution with 

parameters equal to the stable age distribution of 
i

M  (in percent).  This allowed for uncertain, 

but plausible, values of the initial age distribution for simulation purposes. 

We then used the concept of stochastic dominance (Canessa et al. 2016) to explicitly 

account for uncertainty and risk in selecting the harvest rate, h, that maximized the objective 

value.  For each time horizon and harvest rate, we examined the empirical cumulative 

distribution function (cdf) of objective values.  The harvest rate associated with the lowermost 

cdf is the optimal choice if, and only if, it does not cross the cdf for any of the remaining harvest 

rates (called first-order dominance).  If cdf’s cross, then it is necessary to know the general risk 

attitude of the decision maker to identify an optimal harvest rate.  We assumed a risk averse 

(rather than risk seeking) decision maker, so the ascending integrals of the cdf’s were examined 

(the descending integrals would be examined for a risk-seeking decision maker).  The harvest 

rate associated with the lowermost ascending integral is the optimal choice for a risk-averse 

decision maker if, and only if, it does not cross the ascending integral of any of the remaining 

harvest rates (called second-order dominance).  We calculated ascending integrals of the cdf’s 

using numerical integration. 

All calculations were performed using the open-source computing language R 

(RCoreTeam 2016) (R code included as Appendix A). 
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Results 

Using the mass-based model of Johnson et al. (2012), the mean adult survival of taiga bean 

geese expected under ideal conditions was estimated as 0.878 s  (90% credible interval: 

0.799 – 0.934) (Fig. 4).  Assuming age at first breeding is 3 years, and using the model of Niel 

and Lebreton (2005), we estimated the mean intrinsic rate of growth as 0.150 (90% credible 

interval: 0.120 – 0.182) (Fig. 5).  We estimated the mean reproductive parameter as 0.567   

(credible interval: 0.285 – 1.048) (Fig. 6).  We estimated the mean form of density dependence 

as 2.361  (90% credible interval: 0.473 – 11.778) (Fig. 7), suggesting the strongest density 

dependence occurs when the population is near its carrying capacity.  We note, however, that 

the estimate of  is very imprecise and the hypothesis of linear density dependence ( 1  ) 

could not be rejected.  Finally, we estimated mean carrying capacity at the onset of the breeding 

season as 87,900K  (90% credible interval: 82,000 – 94,100) (Fig. 8).  The corresponding 

mid-winter carrying capacity was 93,700K  (90% credible interval: 86,700 – 101,700), which 

accounts for mortality between the winter and breeding periods. 

 

 

Fig. 4.  Adult survival of taiga bean geese in the absence of density dependence and harvest as 

estimated using the method of (Johnson et al. 2012).  The bold vertical line is the mean. 
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Fig. 5.  The intrinsic rate of growth for taiga bean geese as estimated by the method of Niel and 

Lebreton (2005).  The bold vertical line is the mean. 

 

 

Fig. 6.  Estimates of the reproductive parameter, gamma, which when combined with associated 

estimates of survival rate, produce finite growth rates equal to those projected by the Niel and 

Lebreton (2005) model based on survival alone. 
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Fig. 7.  Estimates of the theta parameter in the theta-logistic model using the method of 

(Johnson et al. 2012). 

 

Fig. 8.  Estimated carrying capacity of taiga bean geese (in thousands) in the Central 

Management Unit.  Carrying capacity at the onset of the breeding season was based on expert 

opinion, and winter carrying capacity was assumed to be proportionally higher to account for 

mortality between the wintering and breeding periods.  The histogram was based on 50,000 
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samples from the lognormal distribution of breeding-season carrying capacity, combined with 

50,000 samples of survival rate. 

 

The optimal harvest rate depended on the time horizon (Fig. 9).  Based on the mean utility (over 

all transition matrices 
i

M ), the optimal harvest rates for 5, 10, 15, and 20 years were h = 0.00, 

0.02, 0.05, and 0.06, respectively.  We verified that these were the optimal harvest rates for a 

risk-neutral (first order dominance for the 5-year time horizon) or risk-averse (second order 

dominance for 10, 15, and 20-year time horizons) decision makers based on the concept of 

stochastic dominance (20-year-time horizon depicted in Fig. 10).  These optima represent a 

tradeoff between the harvest rate (and, thus, the harvest) and the time required to achieve and 

maintain a population size within desired bounds (i.e., 60,000 80,000
t

N  with 

  0.99t t
U N   ).  For a 5-year time horizon, h = 0.00 typically approached a population size 

of 60,000 only in the fifth year on the average, but this was highly variable.  With longer time 

horizons, and thus more opportunity for population growth, non-zero harvest rates were 

needed to keep population size within desired bounds.  Approximate harvests for a range of 

mid-winter population sizes and harvest rates are provided in Table 1. 

 

Fig. 9.  Simulated mean utility over time horizons of 5, 10, 15, and 20 years (black, red, blue, and 

green, respectively) for a range of harvest rates of taiga bean geese in the Central Management 

Unit.  Population sizes at the median goal of 70,000 geese have unit utility (see Fig. 3).  Vertical 

dotted lines are the optimal harvest rates for the different time horizons. 
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Fig. 10.  Cumulative distribution function (cdf) (left panel) and the ascending integral of the cdf 

(right panel) of population utility based on simulation of a range of harvest rates of taiga bean 

geese in the Central Management Unit for a 20-year time horizon.  The cumulative distribution 

functions in the left panel cross, meaning that a risk-averse manager must examine the right 

panel to determine that the ascending integral for h = 0.06 dominates all of the remaining 

integrals, suggesting it is the optimal harvest rate for a 20-year time horizon. 

 

Populations of taiga bean geese in the Western and Eastern Units would require at least 

10 and 13 years, respectively, to reach their minimum goals under the most optimistic of 

scenarios (i.e., no harvest and no density dependence).  The presence of anthropogenic-related 

mortality, density dependence, or environmental variation could extend these time frames 

considerably, but we had no way of forecasting these conditions.  Also, it may be that extant 

environmental conditions in these populations would not allow them to attain their maximum 

growth rates, even in the absence of any harvest. 
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Table 1.  Approximate taiga bean goose harvests (in thousands) for a range of mid-winter 

population sizes ( N , in thousands) and harvest rates (h) in the Central Management Unit.  

The approximation is based on the mean transition matrix, M , and the stable age distribution 

of the matrix  td N M .  Note that harvest first increases with population size and then begins 

to decline.  This is a result of density dependence operating at higher population levels, thus 

reducing the size of the allowable harvest. 

 

N  h = 0.01 0.02 0.03 0.04 0.05 0.06 

35 0.5 1.0 1.5 1.9 2.4 2.9 

40 0.5 1.1 1.6 2.2 2.7 3.2 

45 0.6 1.2 1.8 2.3 2.9 3.5 

50 0.6 1.2 1.9 2.5 3.1 3.7 

55 0.6 1.3 1.9 2.6 3.2 3.9 

60 0.6 1.3 2.0 2.6 3.3 3.9 

65 0.6 1.3 1.9 2.6 3.2 3.8 

70 0.6 1.2 1.8 2.4 3.0 3.6 

75 0.5 1.1 1.6 2.2 2.7 3.3 

80 0.4 0.9 1.3 1.8 2.3 2.7 

85 0.3 0.6 1.0 1.3 1.6 1.9 

 

 

Discussion 

We believe the approach presented here can provide a first approximation of allowable harvest 

levels when detailed demographic data are lacking.  The approach can also be useful for 

comparing estimates of demographic parameters based on allometric relationships and expert 

opinion with those from empirical studies.  If slightly more information were available, a more 

useful approach than that presented here for estimating potential population growth may be 

that proposed by Slade et al. (1998):  

 

   1 111 a j j as s f s fs
    
      
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where   is the maximum finite population growth rate (i.e., 
max 1r    ) , 

js  and as  are fixed 

survival rates of pre-reproductives and adults, respectively, f  is a fixed fecundity for all 

reproductives, and   and   are ages at first and last breeding, respectively.  Johnson et al. 

2012) provided methods for estimating f and 
js  for migratory birds using published 

information on the components of vital rates (e.g., nest success and clutch size). 

A key advantage of our approach is the ability to account for management objectives, 

uncertainty, and risk tolerance in a straightforward manner.  Moreover, our approach does not 

conflate biological and management parameters as is the case with other approaches (e.g., Wade 

(1998)).  We explicitly account for considerable demographic uncertainty in formulating the 

population’s likely response to harvest, but then permit a decision maker to specify their 

management objectives and attitude toward risk (we assumed that the decision maker is not 

risk-seeking).  The clear separation between science and policy helps decision makers 

understand whether disagreements about appropriate harvest levels are over predicted 

outcomes or how those outcomes are valued (Lee 1993).  We emphasize that the management 

objective specified here for the Central Management Unit is preliminary, based on guidance 

found in the AEWA International Single Species Action Plan.  It is subject to review by the 

International Taiga Bean Goose Working Group. 

While only a first approximation to allowable harvests, we believe this analysis provides 

reasonable demographic values for taiga bean geese based on our comparisons of this method 

with more data-intensive ones for snow geese (Anser caerulescens), barnacle geese (Branta 

leucopsis) (Niel and Lebreton 2005), and pink-footed geese (Anser brachyrhynchus) (Johnson et 

al. 2014).  Moreover, our estimates of survival and reproductive rates for taiga bean geese in the 

Central Management Unit are reasonably consistent with the fragmentary information provided 

in the International Single Species Action Plan.  Also, it appears that the harvests in Finland and 

Sweden prior to hunting restrictions in 2014 were of sufficient magnitude to keep population 

size depressed near its current value (ca. 40,000). 

Several cautionary notes concerning our modeling and simulation efforts are warranted, 

however.  While our approach explicitly acknowledges that annual survival and reproductive 

rates are uncertain, it assumes they are fixed over time.  Our simulations thus incorporate no 

environmental variation and, as a result, projections of population size over time may be overly 

optimistic.  Also, we note that while our methods are reasonably robust to stochastic changes in 

carrying capacity, K , that is not true of stochastic changes in the intrinsic growth rate, r .  We 

emphasize that our estimates of r  are what one would expect over evolutionary (rather than 

ecological) time scales, and suggest that our estimates of r  should be treated as theoretical 

maximums.  Finally, we emphasize that while a constant harvest rate is robust to environmental 
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variation, absolute harvest is not.  If environmental variation is significant (and can be specified 

stochastically), decision makers might consider the use of stochastic dynamic optimization 

methods, which provide state-dependent prescriptions for allowable harvest (Williams 1985, 

Possingham 1997, Johnson 2011). 

Finally, we note that the management process described in this report for the Central 

Management Unit does not yet represent a fully adaptive strategy.  Adaptation based on what is 

learned depends on the ability to make predictions about changes in population size that are 

model-specific, as well as an ability to measure, at a minimum, actual harvest and population 

size each year.  The comparison of monitoring observations and model predictions then permits 

models to be improved so that better decisions can be made in the future.  This report describes 

a simple model of population dynamics and a straightforward way to account for parameter 

uncertainty.  As described above, however, reliable predictive models for geese may require 

more structure (and thus more data) than the simple model described herein.  We will be 

exploring the potential for more complicated models and standardization of monitoring 

programs for all management units with the AEWA International Taiga Bean Goose Working 

Group in the near future. 
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Appendix A.  R code for estimating demographic parameters of taiga bean geese, and then 

simulating population size over time using a matrix analogue of the theta-logistic population 

model. 

 

# DD Matrix Model v4.r 
# caps stage classes at sad*K to prevent pathological bevavior of logistic for high abundances relative 
to K 
setwd('C:\\Users\\fjohnson\\Documents\\PROJECTS\\Taiga Bean Geese\\Progress Report I') 
 
#library(triangle) 
library(popbio) 
library(rriskDistributions) 
library(gtools) 
library(ggplot2) 
library(popdemo) 
library(akima) 
library(rootSolve) 
library(truncnorm) 
 
ppi = 300 
 
# method of moments for beta and gamma distributions 
MOM.beta=function(mu,var) { 
  sum_ab=(mu*(1-mu)/var)-1 
  a=sum_ab*mu 
  b=sum_ab*(1-mu) 
  c(a,b)} 
 
MOM.gamma = function(mean,var) { 
 gamma.s = var/mean 
 gamma.a = mean/gamma.s 
 return(c(gamma.a,gamma.s)) 
 } 
 
# utility functions 
goal=70 
U.fcn = function(x,goal) (x-goal)^2 
x=0:150 
y = U.fcn(x,goal) 
ystd = (y - max(y)) / (min(y)-max(y)) 
plot(x,ystd,type='l',las=1,lwd=2,xlab="Population size",ylab="Utility");grid() 
 
U.fcn2 = function(x,goal) 1 / (1 + exp(abs(x-goal)-15)) 
y=U.fcn2(x,goal) 
tiff(file='Utility2.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
plot(x,y,type='l',lwd=3,xaxp=c(0,140,7),yaxp=c(0,1,10),las=1,xlab='Winter population 
size',ylab='Utility');abline(v=seq(0,150,10),h=seq(0,1,.1),col='gray',lty=2) 
dev.off() 
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# survival functions, Niel & Lebreton Eq. 15, and F function 
sa.fcn = function(mass,p,alpha) p^(1/(exp(3.22+0.24*log(mass)+rnorm(z,0,sqrt(0.087)))-alpha)) 
getlam1=function(a,s) { ((s*a-s+a+1)+sqrt((s-s*a-a-1)^2-4*s*a^2))/(2*a) } 
getF = function(f,theta,N,K)  (K*(1-(f*theta/(theta+1)))^(1/theta)-N) 
 
################################################################################## 
################################################################################## 
z = 50000 # no. of samples 
 
# Survival calculations 
alpha = 3 # age at first breeding 
mass.mean = 2.843 # female mass (Dunning 2008) 
mass.sd = 0.274 
 
# ... replicates of body mass 
gamma.parm = MOM.gamma(mass.mean,mass.sd^2) 
mass = rgamma(z,shape=gamma.parm[1],scale=gamma.parm[2]) # generate mass replicates 
 
# ... replicates of proportion alive at max longevity (Johnson et al. 2012) 
p = rbeta(z,3.34,101.24) 
 
# ... replicates of adult survival (Slade et al. 1998) 
sa = sa.fcn(mass,p,alpha) 
mean(sa) 
quantile(sa,probs=c(0.05,0.50,0.95)) 
tiff(file='Sa.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
hist(sa,col='gray',freq=F,xlab='Adult survival',main='',breaks=30,las=1); 
abline(v=mean(sa),lwd=2);grid();box() 
dev.off() 
 
# lam1 is the analytical solution for Niel & Lebreton equation 15, given age at first breeding (a) and 
adult survival (s) 
r = log(getlam1(3,sa)) 
mean(r) 
quantile(r,probs=c(0.05,0.50,0.95)) 
tiff(file='r.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
hist(r,col='gray',freq=F,breaks=30,las=1,main='');grid();box();abline(v=mean(r),lwd=2); 
dev.off() 
 
# generate thetas (Saether and Engen 2002) 
e1=rnorm(z,0,sqrt(0.9418)) 
theta1 = exp(1.1286-1.8244*r+e1) 
# use truncated normal for error term 
e = rtruncnorm(z,a=-1.5,b=1.5,0,sqrt(0.9418)) 
theta = exp(1.1286-1.8244*r+e) 
summary(theta1);summary(theta) 
quantile(theta,probs=c(0.05,0.50,0.95)) 
tiff(file='theta.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
hist(theta,col='gray',freq=F,breaks=30,las=1,main='',xlim=c(0,12));grid();box();abline(v=median(theta
),lwd=2); 
dev.off() 



Technical Progress Summary 14 November 
2016 

 

23 
 

 
# Carrying capacity 
#... breeding ground 
curN = 41.800 
(n=c(curN*1.75,curN*2.25)) 
par=get.lnorm.par(p=c(0.05,0.95),q=n,tol=0.001) 
k = rlnorm(z,par[1],par[2]) 
mean(k) 
quantile(k,probs=c(0.05,0.50,0.95)) 
#... wintering K 
K = k/sqrt(sa) 
mean(K) 
quantile(K,probs=c(0.05,0.50,0.95)) 
tiff(file='K.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
hist(K,freq=FALSE,breaks=30,ylim=c(0,0.12),col='gray',main='',las=1);box();#abline(v=median(K),lwd=
2,lty=2) 
curve(dlnorm(x,par[1],par[2]),60,130,ylab='Density',xlab='K',lwd=3,las=1,add=TRUE);grid() 
abline(v=mean(k),lwd=2,lty=2) 
abline(v=mean(K),lwd=1,lty=2) 
text(c(88,93),c(0.11,0.09),pos=4,labels=c('Breeding','Winter'),cex=1.5) 
dev.off() 
 
# generate reproductive parameters 
gamma = NULL 
for (i in 1:z) 
{ 
 gamma.fcn = function(gamma) 
Re(eigen(matrix(c(0,0,(sa[i])*gamma,sa[i],0,0,0,sa[i],sa[i]),byrow=T,nrow=3))$values[1])-1-r[i] 
 gamma[i] = uniroot(gamma.fcn,c(0,10))$root 
} 
mean(gamma) 
quantile(gamma,probs=c(0.05,0.95)) 
tiff(file='gamma.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
hist(gamma,freq=FALSE,breaks=50,col='gray',main='',las=1,xlim=c(0,3));box();abline(v=mean(gamma
),lwd=2,lty=1) 
dev.off() 
 
# compile data 
all = data.frame(cbind(sa,gamma,theta,K)); colnames(all) = c('sa','gamma','theta','K') 
(C=round(cor(all,use='complete.obs',method='spearman'),4)) 
 
# compile matrices 
classes = 3 
M = stable = lambda = NULL 
sad=matrix(nrow=z,ncol=classes) 
for (i in 1:z) 
{ 
 M[[i]] = matrix(c(0,0,(sa[i])*gamma[i],sa[i],0,0,0,sa[i],sa[i]),byrow=T,ncol=classes) 
 lambda[i]=eigen.analysis(M[[i]])$lambda1 
 sad[i,] = eigen.analysis(M[[i]])$stable.stage 
}  
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summary(sad) 
 
# do the r stats match? 
summary(lambda-1) 
summary(r) 
 
################################################################################## 
################################################################################## 
################################################################################## 
# conduct simulation 
h = seq(0,0.10,.01) # harvest rate 
I = diag(classes) 
N0 = 41.8/sqrt(sa)  # intitalize pop 
n = matrix(nrow=3,ncol=z) 
for (j in 1:z) n[,j] = N0[j]* rdirichlet(1,sad[j,]*100)  
 
t = 20  # time steps       
# intitialize arrays for results 
Pop = matrix(nrow=classes,ncol=t) 
D = A = NULL 
N = V = array(NA,c(z,t,length(h))) 
 
for (k in 1:length(h)) 
{ 
 for (j in 1:z)    
 { 
  A[[j]] = M[[j]] 
  A[[j]][1,3] = A[[j]][1,3]*(1-2*h[k]) 
  A[[j]][2,1] = A[[j]][2,1]*(1-h[k])                               
  A[[j]][3,2] = A[[j]][3,3] = A[[j]][3,2]*(1-h[k]) 
  Pop[,1] = n[,j] 
 for (i in 2:t) 
  { 
  D[(i-1)] = 1 - (sum(Pop[,(i-1)])/K[j])^theta[j] 
#  D = diag(c(1-Pop[1,(i-1)]/(K[j]*sad[j,1]), 1-Pop[2,(i-1)]/(K[j]*sad[j,2]), 1-Pop[3,(i-1)]/(K[j]*sad[j,3])) )  
  net = D[(i-1)]*(A[[j]]-I)%*%Pop[,(i-1)] 
  Pop[,i] = Pop[,(i-1)] + net 
  Pop[1,i] = ifelse(Pop[1,i]<0,0,ifelse(Pop[1,i]>sad[j,1]*K[j],sad[j,1]*K[j],Pop[1,i]))       
  Pop[2,i] = ifelse(Pop[2,i]<0,0,ifelse(Pop[2,i]>sad[j,2]*K[j],sad[j,2]*K[j],Pop[2,i]))       
  Pop[3,i] = ifelse(Pop[3,i]<0,0,ifelse(Pop[3,i]>sad[j,3]*K[j],sad[j,3]*K[j],Pop[3,i]))       
  } 
 N[j, ,k] = apply(Pop,2,sum) 
 V[j, ,k] = U.fcn2(N[j, ,k],goal) 
 } 
} 
which(is.na(N)); which(is.nan(N)) 
 
# summaries by harvest rate 
sumV = sumN = NULL 
for (i in 1:length(h))                                                         



Technical Progress Summary 14 November 
2016 

 

25 
 

{ 
 sumV[[i]] = summary(V[,,i]) 
 sumN[[i]] = summary(N[,,i]) 
} 
 
# store values 
V20 = V 
V20.mean = matrix(nrow=z,ncol=length(h)) 
for (i in 1:length(h)) V20.mean[,i] = apply(V20[,,i],1,mean) 
V20.star = apply(V20.mean,2,mean) 
 
# find optimal harvest rate based on mean values 
opt = round(cbind(h, V5.star,V10.star,V15.star,V20.star),4) 
tiff(file='TemporalOptimalv4.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
plot(opt[,1],opt[,2],col='black',type='l',lwd=4,ylab='Mean utility',xlab='Harvest 
rate',las=1,ylim=c(min(opt[,2]),1),xaxp=c(0,0.15,15));grid() 
abline(v=opt[which(opt[,2]==max(opt[,2])),1],col='black',lwd=2,lty=2) 
text(0.0,1,labels=5,col='black',pos=4,font=2) 
lines(opt[,1],opt[,3],col='red',type='l',lwd=4); 
abline(v=opt[which(opt[,3]==max(opt[,3])),1],col='red',lwd=2,lty=2) 
text(0.02,1,labels=10,col='red',pos=4,font=2) 
lines(opt[,1],opt[,4],col='blue',type='l',lwd=4); 
abline(v=opt[which(opt[,4]==max(opt[,4])),1],col='blue',lwd=2,lty=2) 
text(0.05,1,labels=15,col='blue',pos=4,font=2) 
lines(opt[,1],opt[,5],col='seagreen',type='l',lwd=4); 
abline(v=opt[which(opt[,5]==max(opt[,5])),1],col='seagreen',lwd=2,lty=2) 
text(0.06,1,labels=20,col='seagreen',pos=4,font=2) 
dev.off() 
 
 
 
################################################################################## 
 
# stocahstic dominance 
#... cdf's for selected harvest rates 
cdf=list() 
for (i in 1:7) cdf[[i]] = ecdf(V20.mean[,i]) 
 
#... raw cdf's 
tiff(file='StocDomV20.mean.tif',res=ppi,width = 6*ppi, height = 6*ppi) 
par(mfrow=c(1,2),bg='white') 
#xx = seq(0,1,.005) 
#plot(xx,cdf[[1]](xx),type='l',lwd=1,ylab='Cumulative probability',xlab="Utility",main='') 
#lines(xx,cdf[[2]](xx),lwd=1,col='red') 
#lines(xx,cdf[[3]](xx),lwd=1,col='blue') 
#lines(xx,cdf[[4]](xx),lwd=1,col='green') 
#lines(xx,cdf[[5]](xx),lwd=1,col='orange') 
#lines(xx,cdf[[6]](xx),lwd=1,col='purple') 
#legend("topleft",title='Harvest 
rate',cex=1,legend=seq(0.0,0.05,0.01),col=c('black','red','blue','green','orange','purple'),lwd=3) 
# 
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# smoothed cdf's 
fit1 = density(V20.mean[,1],kernel='c') 
fit2 = density(V20.mean[,2],kernel='c') 
fit3 = density(V20.mean[,3],kernel='c') 
fit4 = density(V20.mean[,4],kernel='c') 
fit5 = density(V20.mean[,5],kernel='c') 
fit6 = density(V20.mean[,6],kernel='c') 
fit7 = density(V20.mean[,7],kernel='c') 
 
plot(fit1$x[-1],diff(fit1$x)*cumsum(fit1$y)[-1],type="l",lwd=1,ylab='Smoothed 
cdf',xlab="Value",main='',xlim=c(0,1),las=1,col='black');grid() 
lines(fit2$x[-1],diff(fit2$x)*cumsum(fit2$y)[-1],lwd=1,col='red') 
lines(fit3$x[-1],diff(fit3$x)*cumsum(fit3$y)[-1],lwd=1,col='blue') 
lines(fit4$x[-1],diff(fit4$x)*cumsum(fit4$y)[-1],lwd=1,col='green') 
lines(fit5$x[-1],diff(fit5$x)*cumsum(fit5$y)[-1],lwd=1,col='orange') 
lines(fit6$x[-1],diff(fit6$x)*cumsum(fit6$y)[-1],lwd=1,col='purple') 
lines(fit7$x[-1],diff(fit7$x)*cumsum(fit7$y)[-1],lwd=1,col='brown') 
legend("topleft",title='Harvest 
rate',cex=0.5,legend=seq(0.0,0.06,0.01),col=c('black','red','blue','green','orange','purple','brown'),lw
d=3) 
 
 
## ascending integrals 
int2vec = function(x,v) integrate(ecdf(v),0,x,subdivisions=100000,rel.tol=0.001)$value 
x = seq(0.01,1,.01) 
y = matrix(nrow=length(x),ncol=7) 
for (i in 1:length(x)) for (j in 1:7) y[i,j]=int2vec(x[i],V20.mean[,j]) 
 
plot(x,y[,1],type='l',lwd=1,xlab='Utility',ylab='Ascending integral of 
cdf',las=1,col='black',xlim=c(0,1),ylim=c(0,max(y,na.rm=T)));grid() 
lines(x,y[,2],lwd=1,col='red') 
lines(x,y[,3],lwd=1,col='blue') 
lines(x,y[,4],lwd=1,col='green') 
lines(x,y[,5],lwd=1,col='orange') 
lines(x,y[,6],lwd=1,col='purple') 
lines(x,y[,7],lwd=1,col='brown') 
 
legend("topleft",title='Harvest 
rate',cex=0.5,legend=seq(0.0,0.06,0.01),col=c('black','red','blue','green','orange','purple','brown'),lw
d=3) 
dev.off() 
 
 
# Approximate harvests 
n = seq(35,85,5) 
h = seq(0,0.1,.01) 
propY = H = matrix(nrow=length(n),ncol=length(h)) 
for (j in 1:length(h)) 
{ 
 for (i in 1:length(n)) 
 { 
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 d = 1 - (n[i]/mean(K))^mean(theta) 
 X = matrix(c(0,0,mean(gamma)*mean(sa)*(1-2*h[j]),mean(sa)*(1-h[j]),0,0,0,mean(sa)*(1-
h[j]),mean(sa)*(1-h[j])),byrow=TRUE,nrow=3) 
 A = d * X 
 prop = eigen.analysis(A)$stable.stage 
 propY[i,j] = n[i]*prop[3]*d*mean(gamma)*mean(sa) / n[i]*d*mean(sa) 
 H[i,j] = n[i]*d*mean(sa)*h[j] + n[i]*prop[3]*d*mean(gamma)*mean(sa)*2*h[j] 
 } 
}   
 
harvest.table = as.data.frame(cbind(n,H)) 
colnames(harvest.table)=c('N',h) 
write.csv(harvest.table,'harvest.table.csv') 
 
# West & East maximum pop growth (no harvest, no density dependence) 
t = 20 
E = W = matrix(nrow=classes,ncol=t) 
En = Wn = matrix(nrow=z,ncol=t) 
 
# West 
for (j in 1:z) 
{ 
 W[,1] = sad[j,]*1500 
 for (i in 2:t) 
 { 
  W[,i] = M[[j]]%*%W[,(i-1)] 
 } 
 Wn[j,] = apply(W,2,sum) 
} 
which(is.na(Wn)); which(is.nan(Wn)) 
summary(Wn/1000,digits=3) 
      
# East 
for (j in 1:z) 
{ 
 E[,1] = sad[j,]*20000 
 for (i in 2:t) 
 { 
  E[,i] = M[[j]]%*%E[,(i-1)] 
 } 
 En[j,] = apply(E,2,sum) 
} 
which(is.na(En)); which(is.nan(En)) 
summary(En/1000,digits=3) 
          
# how does D vary with N/K? 
n = seq(0,1,0.05) ; cc = 1 
D = matrix(nrow=z,ncol=length(n)) 
for (i in 1:z) 
{ 
 for (j in 1:length(n)) 
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 { 
 D[i,j] = 1 - (n[j]/cc) ^theta[i] 
 } 
} 
 
 
# VOI  (not used in this report) 
V.tempsum = matrix(nrow=z,ncol=length(h)) 
for (i in 1:length(h)) 
{ 
 V.tempsum[,i] = apply(V[,,i],1,sum) 
} 
(EVPI = mean(apply(V.tempsum,1,max)) - max(apply(V.tempsum,2,mean))) 
(EVPIpct = EVPI / max(apply(V.tempsum,2,mean))) 
 
 
 
 
 
 
 
 
 


