
1 
 

Adaptive	Harvest	Management	
for	the	Svalbard	Population	

of	Pink‐Footed	Geese	
	

Briefing	Summary	
	

Prepared	for:	
AEWA	Svalbard	Pink‐Footed	Goose	

International	Working	Group	
Copenhagen,	Denmark	

April	23,	2013	
	

Prepared	by:	
Dr.	Fred	A.	Johnson	

Southeast	Ecological	Science	Center	
U.S.	Geological	Survey	
Gainesville,	Florida,	USA	

	
Introduction	

The	African‐Eurasian	Waterbird	Agreement	(AEWA;	http://www.unep‐aewa.org/)	calls	for	means	
to	manage	populations	which	cause	conflicts	with	certain	human	economic	activities.		The	Svalbard	
population	of	the	pink‐footed	goose	has	been	selected	as	the	first	test	case	for	such	an	international	
species	management	plan	to	be	developed.		This	document	describes	progress	to	date	on	the	
development	of	an	adaptive	harvest	management	(AHM)	strategy	for	maintaining	pink‐footed	
goose	abundance	near	their	target	level	by	providing	for	sustainable	harvests	in	Norway	and	
Denmark.		This	briefing	supplements	material	provided	in	the	Progress	Summary	distributed	to	the	
International	Working	Group	on	February	1,	2013.	

We	emphasize	that	peer	review	is	an	essential	aspect	of	the	process	of	developing	and	
implementing	an	AHM	program	for	pink‐footed	geese,	and	we	will	continue	to	solicit	reviews	by	the	
International	Working	Group	and	their	staff,	as	well	as	scientists	not	engaged	in	this	effort.		We	
wish	to	make	the	Working	Group	aware	that	the	following	two	manuscripts	have	been	submitted	
recently	to	refereed	journals	and	are	available	upon	request	from	the	senior	authors:	

Jensen,	G.	H.,	J.	Madsen,	F.	A.	Johnson,	and	M.	Tamstorf.		Snow	conditions	as	an	estimator	of	the	
breeding	output	in	high‐Arctic	pink‐footed	geese	Anser	brachyrhynchus.		Polar	Biology:	In	
review.	

Johnson,	F.	A.,	G.	H.	Jensen,	J.	Madsen,	and	B.	K.	Williams.		Uncertainty,	robustness,	and	the	value	of	
information	in	managing	an	expanding	Arctic	goose	population.		Ecological	Modelling:	In	
review.	
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In	addition	to	these	manuscripts,	the	Progress	Summary	(February	1,	2013),	and	this	Briefing	
Summary	(April	23,	2013),	an	annual	report	will	be	produced	in	August	2013	and	every	summer	
thereafter.		Additional	manuscripts	for	journal	publication	are	also	anticipated.	

AHM	Development	

The	Progress	Summary	described	the	development	of	nine	alternative	models	of	population	
dynamics	that	suggest	how	reproductive	and	survival	rates	of	pink‐footed	geese	vary	over	time	
(Table	1).		Five	of	the	models	incorporate	density‐dependent	mechanisms	that	would	maintain	the	
population	near	a	carrying	capacity	(i.e.,	in	the	absence	of	harvest)	of	65k	–	129k	depending	on	the	
specific	model.		The	remaining	four	models	are	density	independent	and	predict	an	exponentially	
growing	population	even	with	moderate	levels	of	harvest.		Consideration	of	these	density‐
independent	models	is	not	intended	to	suggest	that	population	size	is	truly	unregulated,	but	that	
density	dependence	may	only	manifest	itself	at	abundances	far	exceeding	those	experienced	thus	
far.		All	nine	models	fit	the	available	data	and	it	is	not	possible	to	say	with	any	confidence	which	is	
more	appropriate	to	describe	the	contemporary	dynamics	of	pink‐footed	geese.		Therefore,	we	
assigned	equal	probability	to	all	nine	models	and	calculated	an	optimal	strategy	for	the	use	of	
harvest	rates.		The	strategy	was	based	on	an	objective	to	maintain	population	size	in	November	
around	60k	using	sustainable	harvests	in	Norway	and	Denmark.		With	maximum	harvest	rates	of	at	
least	12%,	we	predicted	the	population	could	be	stabilized	around	60k	even	if	the	face	of	continued	
warm	springs	in	Svalbard.	

Table	1.		Nine	alternative	models	of	pink‐footed	goose	population	dynamics	and	their	associated	
carrying	capacities	(K,	in	thousands)	for	randomly	varying	days	above	freezing	in	May	in	Svalbard	
(TempDays).		N	and	A	are	total	population	size	and	the	number	of	sub‐adults	plus	adults	(in	
thousands),	respectively,	on	November	1.		The	sub‐models	represented	by	(.)	denote	randomly	
varying	demographic	rates	(i.e.,	no	covariates).		Models	M3,	M4,	M6,	and	M7	are	density‐
independent	growth	models	and	thus	have	no	defined	carrying	capacity.	

Model	 Survival	sub‐model	
Reproduction	

sub‐model	
K	(sd)	

M0	 (.)	 (TempDays,	A)	 120	(8)	

M1	 (TempDays)	 (TempDays,	A)	 129	(8)	

M2	 (TempDays,	N)	 (TempDays,	A)	 59	(4)	

M3	 (.)	 (TempDays)	 	

M4	 (TempDays)	 (TempDays)	 	

M5	 (TempDays,	N)	 (TempDays)	 66	(3)	

M6	 (.)	 (.)	 	

M7	 (TempDays)	 (.)  	

M8	 (TempDays,	N)	 (.)  65	(5)	
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Efforts	since	distribution	of	the	Progress	Summary	have	focused	on	better	understanding	the	
implications	of	model	uncertainty	and	on	developing	an	optimal	strategy	for	setting	harvest	quotas	
that	would	remain	in	effect	for	three	years.			We	investigated	the	expected	value	of	information,	
which	characterizes	the	increase	in	management	performance	that	could	be	expected	if	model	
uncertainty	were	reduced	or	eliminated.		We	first	calculated	the	expected	value	of	perfect	
information	(EVPI),	which	is	the	expected	increase	in	objective	value	assuming	that	the	most	
appropriate	of	the	nine	population	models	could	be	identified.		EVPI	is	the	model‐averaged	
maximum	objective	value	across	models,	less	the	maximum	of	the	model‐averaged	objective	values.		
In	other	words,	EVPI	is	the	difference	between	the	expected	value	if	uncertainty	were	resolved	and	
the	best	performance	that	could	be	expected	in	the	face	of	continuing	model	uncertainty.		We	also	
calculated	the	expected	value	of	partial	information	(EVPXI),	focusing	on	the	expected	gain	in	
management	performance	if	either	uncertainty	about	the	survival	or	reproductive	processes	could	
be	resolved.		EVPXI	can	be	useful	for	determining	which	source	of	uncertainty	most	limits	
management	performance,	and	therefore	which	uncertainty	may	be	the	most	important	target	for	
active	adaptive	management	or	a	traditional	research	program.		EVPXI	measures	the	loss	of	value	
corresponding	to	uncertainty	across	the	models	in	one	subset,	while	accounting	for	the	residual	
uncertainty	in	the	complimentary	subset.		In	our	case,	we	have	three	alternative	survival	models	
and	three	reproductive	models.	

We	determined	that	the	EVPI	represents	an	increase	of	only	3%	in	objective	value.		The	increase	in	
objective	value	is	calculated	using	a	Markov	Decision	Process	and	an	objective	function,	which	
expresses	the	decision	makers	degree	of	satisfaction	in	terms	of	system	state	(ݔ௧)	(e.g.,	population	
size	and	breeding‐ground	conditions)	and	action	(ܽ௧)	(i.e.,	varying	harvest	levels)	(see	details	in	the	
Progress	Summary):	

ܸሾݔ௧ሿ ൌ max
ሺሻ

ܧ ܪሺܽఛ|ݔఛሻݑሺܽఛ|ݔఛሻ|ݔ௧

்

ఛୀ௧

൩,	

where	ܪሺܽఛ|ݔఛሻ	is	harvest,	and	where	the	relative	desirability	of	a	harvest	amount	(i.e.,	utility)	is	a	
function	of	resulting	population	size:	

ఛሻݔ|ሺܽఛݑ ൌ ݁ି
ଵ
ଶቀ
ேశభି

ଵ ቁ
మ

					if	 ௧ܰାଵ  0	
ൌ 0																																																otherwise,	

and	 ௧ܰାଵ	is	total	population	size.		The	population‐related	utility	is	thus	a	bell‐shaped	curve	with	a	
peak	at	1.0,	corresponding	to	a	goal	for	population	size	of	60	thousand.		The	full	objective	function	
therefore	seeks	to	maximize	sustainable	harvest,	but	devalues	harvest	decisions	that	are	expected	
to	result	in	a	subsequent	population	size	different	than	the	population	goal,	with	the	degree	of	
devaluation	increasing	as	the	difference	between	population	size	and	the	goal	increases.	

The	increase	in	management	performance	expected	from	eliminating	uncertainty	about	the	
survival	process	was	substantially	higher	(EVPXI	=	+2.1%)	than	that	for	the	reproductive	process	
(EVPXI	=	+0.1%),	consistent	with	evidence	that	variation	in	survival	is	more	important	than	
variation	in	reproduction	in	relatively	long‐lived	avian	species.		Overall,	the	low	value	of	
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information	calculated	for	pink‐footed	geese	suggests	that	a	robust	harvest	strategy	could	be	nearly	
as	effective	as	an	adaptive	one.		Robust	harvest	strategies	are	those	that	are	expected	to	perform	
reasonably	well	regardless	of	which	population	model	is	most	appropriate.	

We	used	two	approaches	to	determine	a	robust	harvest	strategy.		In	the	first,	we	identified	the	
model‐specific	harvest	strategy	that	maximized	the	minimum	level	of	expected	performance	(in	
terms	of	the	average	objective	value)	regardless	of	the	most	appropriate	model.		This	so‐called	
maxi‐min	approach	has	sometimes	been	criticized,	however,	as	being	too	conservative	because	it	
emphasizes	the	worst	possible	outcome.		In	the	second	approach,	we	identified	the	model‐specific	
harvest	strategy	that	is	expected	to	minimize	the	maximum	loss.		In	this	case,	the	loss	in	
performance	for	each	model‐strategy	combination	is	calculated	as	the	difference	between	the	
expected	performance	for	each	model‐strategy	combination	and	the	best	performance	expected	
under	each	model.		Then	the	robust	strategy	is	the	one	that	minimizes	the	maximum	loss	across	all	
models.		In	both	approaches	to	robustness,	we	assumed	all	population	models	were	equally	
plausible.		The	use	of	informative	prior	weights	on	the	models	could	lead	to	different	robust	
strategies.	

In	the	face	of	complete	uncertainty	as	to	the	most	appropriate	model	of	population	dynamics,	the	
optimal	strategy	assuming	that	both	survival	and	reproduction	were	a	function	of	goose	abundance	
and	temperature	days	(i.e.,	days	above	freezing	in	May	in	Svalbard)	(model	M2)	maximized	the	
expected	minimum	objective	value.		In	contrast,	the	optimal	strategy	based	on	model	averaging	
(using	equal	model	weights)	minimized	the	expected	maximum	loss	in	objective	value.		This	is	also	
the	strategy	that	maximized	expected	value	across	all	nine	models.		Optimal	strategies	for	models	
M5	(density‐dependent	survival,	and	both	survival	and	reproduction	a	function	of	temperature	
days)	and	M8	(density	and	temperature	dependent	survival;	random	reproduction)	are	also	
expected	to	be	relatively	robust	based	on	our	criteria.		We	have	made	the	tentative	decision	to	use	a	
model‐averaged	harvest	strategy	(i.e.,	the	one	that	both	minimizes	maximum	loss	and	that	also	
maximizes	expected	value)	as	a	basis	for	an	initial	harvest	strategy.		However,	we	intend	to	update	
the	model	weights	associated	with	this	strategy	as	soon	as	experience	permits,	so	that	the	strategy	
will	evolve	over	time	based	on	what	is	learned	in	an	adaptive	process.	

We	next	focused	on	the	development	of	a	strategy	for	prescribing	harvest	quotas	in	a	3‐year	
decision‐making	cycle	(i.e.,	once	chosen,	a	quota	would	remain	in	effect	for	three	hunting	seasons).		
The	following	specifics	are	noteworthy:	

1. Based	on	input	from	the	International	Working	Group,	the	utility	curve	related	to	
population	size	was	modified	to	express	more	satisfaction	with	a	range	of	population	sizes	
in	the	vicinity	of	60k	and	less	satisfaction	of	population	sizes	outside	that	range	(Fig.	1).		
The	revised	utility	curve	is:	

ఛሻݔ|ሺܽఛݑ ൌ
1

1  |ሺݔ݁ ௧ܰାଵ െ 60݇| െ 10݇ሻ
.	
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Fig.	1.		Old	(from	the	Progress	Summary)	and	new	utility	curves	expressing	utility	(or	
satisfaction)	as	a	function	of	the	difference	between	pink‐footed	goose	population	size	and	
the	population	goal	(in	thousands).	
	

2. We	assumed	a	set	of	available	harvest	quotas	of	H	=	{0,	5k,	10k,	15k,	and	20k)	for	use	in	
both	1‐year	and	3‐year	cycles	of	decision	making.		This	set	seemed	reasonable	given	the	
current	harvest	in	Norway	and	Denmark	of	approximately	12k	and	only	coarse	control	over	
harvests.		As	explained	in	the	Progress	Summary,	calculation	of	an	optimal	strategy	of	
absolute	harvest	(rather	than	harvest	rates)	requires	that	we	first	specify	the	number	of	
young	and	adults	in	the	total	harvest.		But	this	cannot	be	known	a	priori	because	it	depends	
on	the	age	composition	of	the	pre‐harvest	population.		Yet,	the	age	composition	of	the	pre‐
harvest	population	cannot	be	predicted	from	our	models	without	knowing	the	age	
composition	of	the	harvest.		To	resolve	this	dilemma	requires	the	ability	to	specify	

ݖ ൌ
ଵି
ଵିௗ∙

,	where	h	is	the	harvest	rate	of	adults	and	d	≈	2	is	the	differential	vulnerability	of	

young	to	adults.		The	problem	is	that	z	is	not	constant,	but	depends	on	the	value	of	h	(which	
is	not	known	a	priori).		Therefore,	we	examined	values	of	z	for	a	range	of	realistic	harvest	
rates	(0.00	–	0.15)	and	calculated	a	“typical”	z	≈	1.1.		We	assumed	this	constant	value	for	the	
purpose	of	optimization.		This	approach	is	considered	preliminary	and	we	intend	to	
evaluate	the	sensitivity	of	the	optimal	strategy	to	variation	in	z.	
	

3. We	calculated	a	“quasi‐optimal”	harvest	strategy	based	on	an	assumption	of	equal	model	
weights	and	a	completely	deterministic	system	using	dynamic	programming.		With	a	1‐year	
decision‐making	cycle	(as	described	in	the	Progress	Summary),	a	bona	fide	optimal	strategy	
could	be	calculated	by	explicitly	accounting	for	all	sources	of	variability	(stochasticity)	in	
survival	and	reproductive	rates	(i.e.,	200	possible	outcomes	each	year	for	each	system	state	
and	each	harvest	action).		With	a	3‐year	decision‐making	cycle,	variation	is	compounded	
annually	between	quota	decisions	and	a	truly	optimal	solution	was	computationally	
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intractable	with	available	software.		Therefore	,	we	calculated	a	deterministic	strategy	
based	on	equal	model	weights	and	simulated	its	application	in	a	fully	stochastic	
environment	to	assess	its	expected	performance.	
	

Fig.	2	depicts	simulated	population	sizes	under	the	deterministic,	quasi‐optimal	strategy.			
Each	graph	depicts	total	population	size	for	100	simulations	of	a	15‐year	period	for	the	model	
listed	in	the	graph	title.		The	open	red	circles	represent	application	of	an	optimal	harvest	
strategy	based	on	a	3‐year	cycle	of	decision	making.		The	solid	black	dots	represent	application	
of	an	optimal	strategy	based	on	annual	decision	making.		All	simulations	begin	with	a	
population	comprised	of	16k	young	and	64k	adults	(i.e.,	the	Nov	2011	population).		Both	the	1‐
year	and	3‐year	harvest	policies	were	based	on	equal	model	weights	(determined	previously	to	
be	a	relatively	robust	strategy)	and	each	strategy	was	limited	to	a	maximum	harvest	quota	of	
20k	geese.		A	number	of	interesting	patterns	are	apparent:	
	

 As	expected,	there	is	generally	more	variability	in	population	size	under	the	3‐year	cycle	
of	decision	making	than	under	annual	decisions.		Also,	there	is	more	uncertainty	about	
population	size	in	the	latter	part	of	the	period	than	in	the	beginning	(because	
environmental	variation	is	compounded	over	time).		These	patterns	are	less	true	of	
models	with	density	dependence	than	without	(because	populations	with	density	
dependence	are	more	self‐regulating).	
	

 Generally,	there	is	greater	risk	of	low	populations	(i.e.,	N	<<	60k)	with	the	3‐year	cycle	
than	the	1‐year	cycle.		This	is	particularly	true	in	early	years	for	models	with	density	
dependence.		Over	the	longer	term,	however,	density‐dependence	in	these	models	tends	
to	help	keep	the	population	closer	to	60k.	
	

 There	is	considerable	risk	of	the	population	escaping	our	ability	to	control	it	(with	a	
maximum	harvest	quota	=	20k)	if	the	most	appropriate	model	lacks	density	
dependence.		This	risk	is	higher	under	the	3‐year	cycle	than	in	the	1‐year	cycle	(because	
you	can	act	more	quickly	in	the	latter	to	bring	the	population	under	control	after	a	
series	of	years	with	good	environmental	conditions).			

We	also	examined	expected	changes	in	harvest	quotas.		Table	2	depicts	the	expected	frequency	of	3‐
year	runs	of	the	same	harvest	quota	under	both	the	3‐year	and	1‐year	decision‐making	cycles.		With	
the	3‐year	cycle,	harvest	quotas	remain	unchanged	for	3‐year	periods,	but	managers	could	also	
expect	occasional	runs	of	the	same	harvest	quota	for	multiple	3‐year	cycles	(i.e.,	6,	9,	12	years,	etc.).		
Harvest	quotas	hardly	ever	remain	the	same	for	three	years	in	a	row	under	a	1‐year	cycle	of	
decision	making.		However,	the	magnitude	of	change	in	harvest	quota	was	substantially	lower	than	
in	a	3‐year	cycle	(i.e.,	relatively	infrequent	changes	in	harvest	quota	are	accompanied	by	relatively	
large	changes	in	the	quota	when	a	change	is	necessary).		Fig.	2	and	Table	2	help	demonstrate	the	
tradeoffs	associated	with	using	a	3‐year	cycle	of	decision	making	rather	than	allowing	for	the	
establishment	of	a	harvest	quota	every	year.	
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Finally,	we	simulated	population	size	assuming	that	the	current	level	of	harvest	(12k)	could	not	be	
modified.		In	other	words,	we	wanted	to	understand	the	worst‐case	scenario	if	harvest	could	not	be	
reduced	when	necessary.		Fig.	3	depicts	a	relatively	high	probability	of	a	population	crash	under	all	
nine	models.		Under	some	density‐independent	models	there	is	also	a	relatively	high	probability	of	
populations	increasing	beyond	our	ability	to	control	them.	

The	quasi‐optimal	strategy	based	on	equal	model	weights	and	a	deterministic	system	is	a	look‐up	
table	consisting	of	4	columns	and	6,248	rows	for	combinations	of	the	number	of	young	from	0	to	
20k	in	increments	of	2k,	number	of	adults	from	0	to	140k	in	increments	of	2k,	and	temperature	
days	from	0	to	28	in	increments	of	4	(although	other	discretizations	are	possible).		This	table	
provides	the	3‐year	harvest	quota	for	each	potential	combination	of	young	and	adults	in	November	
and	temperature	days	the	following	May	in	Svalbard.		Because	it	is	not	practical	to	depict	the	
strategy	here,	we	used	a	linear	model	and	least‐squares	regression	to	calculate	an	approximate	
decision	rule	for	population	sizes	<100k`:	

ܳ ൌ െ13.942  0.304ܻ  ܣ0.352  	,ܦ0.102

where	Q	is	harvest	quota	in	thousands,	Y	and	A	are	the	number	of	young	and	adults	in	thousands	in	
November,	respectively,	and	D	=	temperature	days	in	May.		Thus,	the	decision	rule	implies	adding	
304	to	the	harvest	quota	for	every	thousand	young,	adding	352	to	the	quota	for	every	thousand	
adults,	and	adding	102	to	the	quota	for	every	temperature	day.	

The	full	harvest	strategy	suggests	that	the	appropriate	harvest	quota	for	2012‐2014	would	be	15k	
(based	on	Y	=	16k,	A	=	64k,	and	D	=	5).		Based	on	very	preliminary	data,	assume	that	Y	=	6k	and	A	=	
64k	in	November	2012	and	that	D	=	8	(i.e.,	near	average)	in	May	2013.		The	harvest	strategy	
prescribes	a	harvest	quota	for	2013‐2015	of	10k.		These	examples	are	for	illustrative	purposes	
only;	we	don’t	anticipate	a	strategy	being	implemented	before	the	summer	of	2014	(i.e.,	for	2014‐
1016).	

Finally,	we	calculated	the	conditions	under	which	an	emergency	hunting‐season	closure	might	be	
needed	within	the	three	years	in	which	the	harvest	quota	is	constant.		Fig.	4	depicts	when	closures	
would	be	optimal	for	varying	numbers	of	young	and	adults	(colored	area).		The	colors	indicate	the	
minimum	number	of	temperature	days	required	to	prevent	season	closure.		As	the	number	of	
young	and	adults	decrease,	the	number	of	temperature	days	required	to	keep	the	season	open	
increases.	
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Table	2.		The	frequency	of	3‐year	runs	of	the	same	harvest	quota	based	on	100	trials	of	a	15‐year	
time	frame,	under	both	the	3‐year	and	1‐year	decision‐making	cycles.		For	the	3‐year	cycle	most,	
but	not	all,	runs	of	the	same	harvest	quota	were	three	years;	the	remainder	were	runs	of	the	same	
quota	for	multiples	of	three	years.		IQ	range	is	the	inter‐quartile	range	in	harvest	quotas	when	
changes	in	quota	are	required.		A	relatively	wide	range	suggests	that	the	change	in	harvest	quota	
will	be	relatively	large	when	a	change	in	quota	is	necessary.	

3‐year	cycle	 1‐year	cycle	

Model	 Frequency	(%)	
(3‐yr	runs)	

Quota
(k)	

(IQ	range)	

Frequency	(%)	
(3‐yr	runs)	

Quota
(k)	

(IQ	range)	

M0	 83.2	 ‐10,	5	 8.7	 ‐5,	5	

M1	 78.0	 ‐10,	5	 9.5	 ‐5,	5	

M2	 54.2	 ‐15,	5	 13.5	 ‐5,	5	

M3	 86.2	 ‐5,	5	 11.7	 ‐5,	5	

M4	 84.4	 ‐5,	5	 12.9	 ‐5,	5	

M5	 75.1	 ‐15,	5	 9.7	 ‐5,	5	

M6	 76.9	 ‐10,	5	 8.8	 ‐5,	5	

M7	 77.7	 ‐10,	5	 7.7	 ‐5,	5	

M6	 76.4	 15,	5	 9.5	 ‐5,	5	
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Fig.	2.		Simulated	population	sizes	of	pink‐footed	geese	(in	thousands)	under	an	optimal	harvest	strategy	(based	on	equal	mode	
weights).		The	open	red	circles	represent	application	of	an	optimal	harvest	strategy	based	on	a	3‐year	cycle	of	decision	making.		The	
solid	black	dots	represent	application	of	an	optimal	strategy	based	on	annual	decision	making.		Each	graph	depicts	total	population	
size	for	100	simulations	of	a	15‐year	period	for	the	model	listed	in	the	graph	title.			

5 10 15

20
40

60
80

10
0

M0:  S(.) R(Days,A)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M1:  S(Days) R(Days,A)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M2:  S(Days,N) R(Days,A)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M3:  S(.) R(Days)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M4:  S(Days) R(Days)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M5:  S(Days,N) R(Days)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M6:  S(.) R(.)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M7:  S(Days) R(.)

Year

P
op

ul
at

io
n 

si
ze

5 10 15

20
40

60
80

10
0

M8:  S(Days,N) R(.)

Year

P
op

ul
at

io
n 

si
ze



10 
 

Fig.	3.		Simulated	population	sizes	of	pink‐footed	geese	(in	thousands)	under	a	constant	harvest	of	12k.		Each	graph	depicts	total	
population	size	for	100	simulations	of	a	15‐year	period	for	the	model	listed	in	the	graph	title.
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Fig.	4.		Conditions	under	which	a	closed	hunting	season	for	pink‐footed	geese	should	be	considered	
(colored	area)	within	3‐year	decision	making	periods.		The	different	colors	represent	the	minimum	
number	of	temperature	days	(i.e.,	days	above	freezing	in	May	in	Svalbard)	required	to	prevent	a	
season	closure.		As	the	number	of	young	and	adults	decrease,	the	number	of	temperature	days	
required	to	keep	the	season	open	increases.		Numbers	of	adults	and	young	are	in	thousands.	
	

AHM	Process	and	Implementation	Needs	

An	adaptive,	3‐year	cycle	of	decision	making	for	pink‐footed	geese	would	follow	these	steps:	

1. Summer	of	year	1	(year	t),	choose	a	harvest	quota	based	on:	
 A	strategy	assuming	equal	model	weights	
 Counts	of	young	and	adults	from	the	previous	November	
 Number	of	temperature	days	in	May	of	the	current	year	

	
2. Summer	of	years	2‐3	(t+1,	t+2)	

 Examine	actual	harvest	and	population	response	
 Update	model	weights	by	comparing	observed	and	predicted	population	response	
 Recalculate	model‐weighted	strategy	
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 Determine	if	an	emergency	closure	required;	otherwise	take	no	action	
	
	

3. Summer	of	year	4	(t+3)	
 Examine	actual	harvest	and	population	response	
 Update	model	weights	by	comparing	observed	and	predicted	population	response	
 Recalculate	model‐weighted	strategy	
 Choose	next	3‐year	quota	
 Reset	(t)	

	
4. Return	to	step	2	

	
To	implement	this	process,	continued	monitoring	of	the	population	size	and	its	age	structure	in	
November	is	required.		Moreover,	we	will	require	annual	estimates	of	the	harvest	in	Norway	and	
Denmark,	as	well	as	the	age	composition	of	the	harvest	if	practical.		This	information	must	be	
available	by	early	summer	of	each	year	in	order	to	update	model	weights,	determine	if	an	
emergency	closure	should	be	considered,	and	to	establish	new	harvest	quotas	after	every	three	
years.	
	
Over	the	longer	term,	there	are	two	key	needs.		The	first	is	to	transition	to	the	use	of	a	spring	count	
of	population	size.		The	November	count	is	essentially	a	post‐harvest	census,	which	provides	the	
age	structure	of	the	population	after	young	and	adults	have	been	exposed	to	hunting.		Ideally,	
however,	we	would	like	to	know	the	age	structure	of	the	population	prior	to	harvesting.		It	is	the	
post‐harvest	assessment	of	age	structure	that	causes	difficulty	in	using	absolute	harvest	as	a	control	
variable.		The	availability	of	estimates	of	harvest	rate	or	age	composition	of	the	harvest	would	allow	
us	to	overcome	this	problem.		There	are	other	problems	with	a	November	census,	however.		An	
assessment	of	population	status	just	prior	to	making	a	decision	about	appropriate	hunting	seasons	
is	preferred.		With	the	November	census,	the	time	between	population	assessment	and	the	
subsequent	hunting	season	is	long	(9	–	10	months),	meaning	that	our	predictions	of	population	
status	just	prior	to	the	hunting	season	are	very	uncertain.		Even	more	problematic,	however,	is	the	
fact	that	in	recent	years	more	of	the	harvest	has	been	occurring	after	the	November	census	because	
geese	are	staying	in	Denmark	longer.		The	fact	that	the	November	census	increasingly	occurs	before	
the	effects	of	the	current	hunting	season	are	realized	is	a	problem	that	can	only	be	addressed	by	
making	critical	assumptions	that	cannot	be	verified.		For	all	of	these	reasons,	we	believe	it	is	
prudent	to	consider	the	count	conducted	on	staging	areas	during	spring	migration.		To	use	the	
spring	count,	however,	we	will	need	to	recalibrate	all	the	models	of	population	dynamics.	
	
There	is	also	a	pressing	need	to	assess	current	rates	of	survival.		A	high	priority	should	be	to	
examine	all	mark‐recapture	data	since	1990	as	part	of	a	comprehensive	analysis	targeted	at	
supporting	the	adaptive‐management	framework.		In	particular,	we	would	like	to	know	whether	
survival	rates	differ	among	age	classes.		For	long‐lived	species	like	geese,	survival	is	the	most	
critical	rate	determining	an	appropriate	harvest	strategy,	and	significant	age	dependency	in	
survival	has	important	implications	for	how	populations	respond	to	harvest.		Specifically,	we	would	
like	to	understand	whether	the	pink‐footed	goose	population	could	be	expected	to	exhibit	transient	
dynamics	in	response	to	harvest	because	of	the	phenomenon	of	population	momentum.		Population	
momentum	resulting	from	significant	age	dependency	in	demographic	rates	can	induce	time	delays	
in	the	response	to	harvest	(or	other	environmental	factors).		A	failure	to	recognize	important	age	
dependencies	thus	raises	the	risk	of	changing	a	harvest‐management	action	before	the	effects	of	the	
original	action	are	fully	realized.	
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